Gödel for Goldilocks: A Rigorous, Streamlined Proof of (a variant of) Gödel's First Incompleteness Theorem
Abstract
Most discussions of Gödel's theorems fall into one of two types: either they emphasize perceived philosophical, cultural "meanings" of the theorems, and perhaps sketch some of the ideas of the proofs, usually relating Gödel's proofs to riddles and paradoxes, but do not attempt to present rigorous, complete proofs; or they do present rigorous proofs, but in the traditional style of mathematical logic, with all of its heavy notation and difficult definitions, and technical issues which reflect Gödel's original approach and broader logical issues. Many nonspecialists are frustrated by these two extreme types of expositions and want a complete, rigorous proof that they can understand. Such an exposition is possible, because many people have realized that variants of Gödel's first incompleteness theorem can be rigorously proved by a simpler middle approach, avoiding philosophical discussions and handwaiving at one extreme; and also avoiding the heavy machinery of traditional mathematical logic, and many of the harder detail's of Gödel's original proof, at the other extreme. This is the justright Goldilocks approach. In this exposition we give a short, selfcontained Goldilocks exposition of Gödel's first theorem, aimed at a broad, undergraduate audience.
 Publication:

arXiv eprints
 Pub Date:
 September 2014
 arXiv:
 arXiv:1409.5944
 Bibcode:
 2014arXiv1409.5944G
 Keywords:

 Mathematics  Logic;
 Computer Science  Logic in Computer Science
 EPrint:
 Version 2 corrects typos and one definition in the first version, and expands or contracts parts of the exposition, but the main content remains the same. Version 3 removes an unnecessary comment in Version 2